
Risk and Ambiguity



The Arrow-Pratt Premium

• 𝑊 = current wealth

• 𝑧 = random gamble payoffs where

𝐸 𝑧 = 0, 𝑉𝑎𝑟 𝑧 = 𝜎𝑧
2

• 𝑊 + 𝑧 = wealth given gamble

• 𝜋𝐴 = 𝜋(𝑊, 𝑧) = absolute risk Premium

• 𝜋𝑅 =
𝜋𝐴

E W+z
= relative risk premium

• Certainty-Equivalent Value 𝐶𝐸 𝑊 + 𝑧 = 𝑈−1 𝐸 𝑈 𝑊 + 𝑧
• The absolute risk premium is defined by 

𝜋𝐴 = 𝜋 𝑊, 𝑧 = 𝐸 𝑊 + 𝑧 − 𝐶𝐸 𝑊 + 𝑧 = 𝑊 + 𝐸 𝑧 − 𝐶𝐸(𝑊 + 𝑧)
𝐶𝐸 𝑊 + 𝑧 = 𝑊 + 𝐸 𝑧 − 𝜋𝐴
𝑈(⋅)

𝐸 𝑈 𝑊 + 𝑧 = 𝑈 𝑊 + 𝐸 𝑧 − 𝜋𝐴 = 𝑈 𝑊 − 𝜋𝐴
LHS: expected utility of the current level of wealth, given the gamble
RHS: utility of the current level of wealth plus the expected value of the gamble less the risk premium

• The relative risk premium: 𝜋𝑅 =
𝜋𝐴

E W+z
= 1 −

𝐶𝐸 𝑊+𝑧

𝐸 𝑊+𝑧
, 𝐶𝐸 𝑊 + 𝑧 = 𝐸 𝑊 + 𝑧 × (1 − 𝜋𝑅)

𝑈(⋅)
𝐸 𝑈 𝑊 + 𝑧 = 𝑈 𝐸 𝑊 + 𝑧 × 1 − 𝜋𝑅 = 𝑈 𝑊 1 − 𝜋R = 𝑈[𝑊 −𝑊𝜋𝑅]

✓ coefficient of absolute risk aversion (CARA): 𝐴 𝑤 = −
𝑈′′ 𝑤

𝑈′ 𝑤

✓ coefficient of relative risk aversion (CRRA): R 𝑤 = 𝑤A(𝑤) = −𝑤
𝑈′′ 𝑤

𝑈′ 𝑤



• 𝐸 𝑈 𝑊 + 𝑧 = 𝑈 𝑊 − 𝜋𝐴

= 𝑈[𝑊 −𝑊𝜋𝑅]

• By Taylor series expansion (around 𝑊)

• CARA:

✓ LHS = 𝐸 𝑈 𝑊 + 𝑧𝑈′ 𝑊 +
1

2
𝑧2𝑈′′ 𝑊 = 𝑈 𝑊 +

1

2
𝑉𝑎𝑟 𝑧 𝑈′′(𝑊)

✓ RHS = 𝑈 𝑊 − 𝜋𝐴𝑈
′ 𝑊 (Pratt assumes that second order and higher terms are insignificant)

→ 𝑈 𝑊 +
1

2
𝑉𝑎𝑟 𝑧 𝑈′′ 𝑊 = 𝑈 𝑊 − 𝜋𝐴𝑈

′ 𝑊 , 

𝜋𝐴 =
1

2
−
𝑈′′ 𝑊

𝑈′ 𝑊
𝑉𝑎𝑟 𝑧 =

1

2
−
𝑈′′ 𝐸(𝑊 + 𝑧)

𝑈′ 𝐸(𝑊 + 𝑧)
𝑉𝑎𝑟 𝑊 + 𝑧

→ 𝐴 𝑤 = −
𝑈′′ 𝑤

𝑈′ 𝑤

• CRRA: 

✓ LHS = 𝑈 𝑊 +
1

2
𝑉𝑎𝑟 𝑧 𝑈′′ 𝑊

✓ RHS = 𝑈 𝑊 −𝑊𝜋𝑅𝑈
′ 𝑊

→ 𝑈 𝑊 +
1

2
𝑉𝑎𝑟 𝑧 𝑈′′ 𝑊 = 𝑈 𝑊 −𝑊𝜋𝑅𝑈

′ 𝑊 , 

𝜋𝑅 =
1

2
−

𝑈′′ 𝑊

𝑈′ 𝑊

𝑉𝑎𝑟 𝑧

𝑊
=

1

2
−

𝑈′′ 𝑊

𝑈′ 𝑊

𝑉𝑎𝑟 𝑊+𝑧

𝐸(𝑊+𝑧)

=
1

2
−

𝑈′′ 𝑊

𝑈′ 𝑊
𝐸 𝑊 + 𝑧

𝑉𝑎𝑟 𝑊+𝑧

𝐸 𝑊+𝑧
2 =

1

2
−

𝑈′′ 𝐸 𝑊+𝑧

𝑈′ 𝐸 𝑊+𝑧
𝐸 𝑊 + 𝑧 𝑉𝑎𝑟

𝑊+𝑧

𝐸 𝑊+𝑧

→ R w = −𝑤
𝑈′′ 𝑤

𝑈′ 𝑤



𝐴 𝑤 = −
𝑈′′ 𝑤

𝑈′ 𝑤
, 𝜋𝐴 =

1

2
𝐴 𝑤 𝑉𝑎𝑟(𝑤)

𝑑𝐴 𝑤

𝑑𝑤
=
−𝑈′′′ 𝑤 𝑈′ 𝑤 + 𝑈′′ 𝑤

2

𝑈′ 𝑤
2

𝑑𝐴 𝑤

𝑑𝑤
> 0 ⇒ 𝑈′′′ 𝑤 < 0

𝑑𝐴 𝑤

𝑑𝑤
< 0 ⇒ 𝑈′′′ 𝑤 > 0

𝑤

𝑈(𝑤)

𝑤

𝑈(𝑤)

𝑅 𝑤 = −𝑤
𝑈′′ 𝑤

𝑈′ 𝑤
, 𝜋𝑅 =

1

2
𝑅 𝑤 𝑉𝑎𝑟

𝑤

𝐸 𝑤

𝑑𝑅 𝑤

𝑑𝑤
=
− 𝑈′′ 𝑤 + 𝑤𝑈′′′ 𝑤 𝑈′ 𝑤 + 𝑤 𝑈′′ 𝑤

2

𝑈′ 𝑤
2

𝑑𝑅 𝑤

𝑑𝑤
> 0 ⇒ 𝑈′′ 𝑤 +𝑤𝑈′′′ 𝑤 < 0

𝑑𝑅 𝑤

𝑑𝑤
< 0 ⇒ 𝑈′′ 𝑤 + 𝑤𝑈′′′ 𝑤 > 0



• CARA: 𝐴 𝑤 = −
𝑈′′ 𝑤

𝑈′ 𝑤

1. 恆定型絕對風險趨避（Constant Absolute Risk Aversion, CARA）：對於風險的趨避程度不取決於資

產的多少，即使資產增加，對風險的趨避不變，最高投資數額不變，即
𝑑𝐴 𝑤

𝑑𝑤
= 0，則可以稱作恆定型絕

對風險趨避。

2. 遞減型絕對風險趨避（Decreasing Absolute Risk Aversion, DARA）:隨著資產的增加，對於風險的

趨避程度降低，最高投資數額變大，即
𝑑𝐴 𝑤

𝑑𝑤
< 0，則可以稱作遞減型絕對風險趨避。

3. 遞增型絕對風險趨避（Increasing Absolute Risk Aversion, IARA）：隨著資產的增加，對於風險的

趨避程度增加，最高投資數額變小，即
𝑑𝐴 𝑤

𝑑𝑤
> 0， 則可以稱作遞增型絕對風險趨避。

• CRRA: R 𝑤 = −𝑤
𝑈′′ 𝑤

𝑈′ 𝑤

1. 恆定型相對風險趨避（Constant Relative Risk Aversion, CRRA）：投資數額占總資產的比率不隨總

資產的變化而變化，無論總資產增加或減少，投資數額都占固定的比率（比如10%），如果
𝑑𝑅 𝑤

𝑑𝑤
= 0成

立，則可定義為恆定型相對風險趨避。

2. 遞減型相對風險趨避（Decreasing Relative Risk Aversion, DRRA）：投資數額占總資產的比率隨總

資產的增加而增加,表示對風險的趨避程度降低，如果
𝑑𝑅 𝑤

𝑑𝑤
< 0成立，則可定義為遞減型相對風險趨避。

3. 遞增型相對風險趨避（Increasing Relative Risk Aversion, IRRA）：投資數額占總資產的比率隨總資

產的增加而減少,表示對風險的趨避程度增加，如果
𝑑𝑅 𝑤

𝑑𝑤
> 0成立，則可定義為遞增型相對風險趨避。

資料來源：維基百科



• Arrow-Pratt’s risk theory: CARA、CRRA

• example: our utility function is 𝑈 𝑤 = 𝑒−𝛽t𝑊𝛾

• CARA: A W = −
𝑈′′ 𝑊

𝑈′ 𝑊
= −

𝑒−𝛽𝑡𝛾 𝛾−1 𝑊𝛾−2

𝑒−𝛽𝑡𝛾𝑊𝛾−1 =
1−𝛾

𝑊
, 
𝑑𝐴 𝑤

𝑑𝑤
= −

1−𝛾

𝑊2 < 0→遞減型絕對風險趨避

• CRRA: R(W) = −𝑊
𝑈′′ 𝑊

𝑈′ 𝑊
= −𝑊

𝑒−𝛽𝑡𝛾 𝛾−1 𝑊𝛾−2

𝑒−𝛽𝑡𝛾𝑊𝛾−1 = 1 − 𝛾 , 
𝑑𝑅 𝑤

𝑑𝑤
= 0 →恆定型相對風險趨避

• 1 − 𝛾愈大(𝛾愈小)，愈風險趨避

• 𝑈 𝑊 =
𝑤𝛾

1−𝛾

• CARA: A W = −
𝑈′′ 𝑊

𝑈′ 𝑊
= −

−𝛾𝑊𝛾−2

𝛾
𝑊𝛾−1

1−𝛾

=
1−𝛾

𝑊

• CRRA: R W = −𝑊
𝑈′′ 𝑊

𝑈′ 𝑊
= 1 − 𝛾



Ambiguity

• The use of the term “ambiguity” to describe a particular type of uncertainty is due to Daniel 
Ellsberg in his classic 1961 article and 1962 PhD thesis, who informally described it as:

• Unlike the economic concepts of “risk” and “risk aversion,” there is not unanimous agreement on 
what “ambiguity aversion,” or even “ambiguity” itself, exactly is. However several models and 
definitions have been proposed.



• state space 𝒮 with a common partition {𝐸1, … , 𝐸𝑛}

• Preferences are defined over the domain of horse-roulette acts – henceforth called acts –
namely maps 𝑓 = (… ; 𝑃𝑗 𝑖𝑓 𝐸𝑗; … ) = (… ; (… ; 𝑥𝑖𝑗 , 𝑝𝑖𝑗; … ), 𝐸𝑗; … ) from a (finite or infinite) 
state space 𝒮 to roulette lotteries 𝑃𝑗 over a set of prizes 𝒳.

• acts 𝑓 = {… ;𝑷𝑗 𝑖𝑓 𝐸𝑗; … } and 𝑔 = {… ;𝑸𝑗 𝑖𝑓 𝐸𝑗; … }

• given probability 𝛼 ∈ (0,1), the mixture  𝛼 ⋅ 𝑓 + 1 − 𝛼 ⋅ 𝑔 is defined as the act
𝛼 ⋅ 𝑓 + 1 − 𝛼 ⋅ 𝑔 = {… ; 𝛼𝑷𝑗 + 1 − 𝛼 𝑸𝑗; … }

• Axioms 

• Maxmin Expected Utility (MEU, or called the Multiple-Priors(MP) model)  (Daniel Ellsberg,1961)
• Consider a closed, convex set 𝐶 of probability measures – priors – on the state space 𝒮, a von 

Neumann-Morgenstern utility function 𝑈(⋅)

• The expected utility of preference over act 𝑓(⋅) is evaluated as 𝑊 𝑓 ⋅ = min
𝜇∈𝐶

∫ 𝑈 𝑓 ⋅ 𝑑𝜇

1. Weak order: ∀ 𝑓, 𝑔, ℎ ∈ ℱ (1) either 𝑓 ≽ 𝑔 or g ≽ 𝑓 (2) if 𝑓 ≽ 𝑔 and 𝑔 ≽ ℎ, then 𝑓 ≽ ℎ
2. Non-Degeneracy: There exists acts 𝑓 and 𝑔 for which 𝑓 ≻ 𝑔.
3. Continuity: ∀ acts 𝑓, 𝑔, ℎ, if 𝑓 ≻ 𝑔 and 𝑔 ≻ ℎ, there exists 𝛼, 𝛽 ∈ (0,1) such that      

𝛼 ⋅ 𝑓 + 1 − 𝛼 ⋅ ℎ ≻ 𝑔 and g ≻ 𝛽 ⋅ 𝑓 + 1 − 𝛽 ⋅ ℎ
4. Independence: ∀ acts 𝑓, 𝑔, ℎ and all 𝛼 ∈ (0,1), 

𝑓 ≽ 𝑔 ⟺ 𝛼 ⋅ 𝑓 + 1 − 𝛼 ⋅ ℎ ≽ 𝛼 ⋅ 𝑔 + 1 − 𝛼 ⋅ ℎ
5. Monotonicity: ∀ acts 𝑓, 𝑔, if the roulette lottery ƒ(𝑠) is weakly preferred to the roulette 

lottery 𝑔(𝑠) for every state 𝑠, then 𝑓 ≽ 𝑔



• e.g. As Ellsberg’s primary examples, he offered two thought-experiment decision 
problems, which remain the primary motivating factors of research on ambiguity and 
ambiguity aversion to the present day. The most frequently cited of these, known as the 
Three-Color Ellsberg Paradox. 

• Let the state space be {𝑠𝑟 , 𝑠𝑏, 𝑠𝑦}, where 𝑠𝑟 denotes the draw of a red ball, etc.

• Let the set of prizes be 𝒳 = {$0, $100}

• Set 𝑈 $100 = 1 and 𝑈 $0 = 0

• To reflect the assumption that 30 out of the 90 balls in the urn are red, 

but that the number of black and yellow balls is not known, consider 

the set of priors 𝐶 = 𝜇 ∈ Δ 𝒮 : 𝜇 𝑠𝑟 =
1

3

• Every prior 𝜇 ∈ 𝐶 assigns probability  
1

3
to the state 𝑠𝑟 →𝑊 𝑎1 =

1

3

• Every prior 𝜇 ∈ 𝐶 assigns probability 
2

3
to the state {𝑠𝑏 , 𝑠𝑦}→𝑊 𝑎4 =

2

3

• Act 𝑎2 yields $100 on state 𝑠𝑏 and $0 otherwise → it is a bet on black.

The prior in 𝐶 assigns 𝑃 𝑠𝑏 = 0, 𝑃 𝑠𝑦 =
2

3
such that minimized expected utility. →𝑊 𝑎2 = 0

• Act 𝑎3 yields $100 on the event {𝑠𝑟 , 𝑠𝑦} and zero otherwise → it is a bet against black.

The prior in 𝐶 assigns 𝑃 𝑠𝑏 =
2

3
, 𝑃 𝑠𝑦 = 0 such that minimizes expected utility. →𝑊 𝑎3 =

1

3

➔ 𝑎1 ≻ 𝑎2 and 𝑎3 ≺ 𝑎4

𝑊 𝑓 ⋅ = min
𝜇∈𝐶

∫ 𝑈 𝑓 ⋅ 𝑑𝜇



• 𝑊 𝑓 = ∫
𝒮
𝑈 𝑓 𝑠 𝑑𝜇(𝑠) = σ𝑗=1

𝑛 𝑈 𝑷𝑗 ⋅ 𝜇 𝐸𝑗 = σ𝑗=1
𝑛 σ𝑖𝑈 𝑥𝑖𝑗 𝑝𝑖𝑗 ⋅ 𝜇 𝐸𝑗

• 𝑊 𝑓 ⋅ = 𝜌 ⋅ ∫ 𝑈 𝑓 ⋅ 𝑑𝜇0 + 1 − 𝜌 ⋅ min
𝜇∈𝐷

∫ 𝑈 𝑓 ⋅ 𝑑𝜇 (Daniel Ellsberg,1961)

• 𝜌 ∈ (0,1) represents the individual’s “degree of confidence” in the estimate 𝜇0, 𝐷 is a set of 
distributions that still seem ‘reasonable,’  and 𝐶 = 𝜌 ⋅ 𝜇0 + 1 − 𝜌 ⋅ 𝐷 is seen to be the set of 
priors.

• 𝑊 𝑓 ⋅ = 𝛼 ⋅ min
𝜇∈𝐶

∫ 𝑈 𝑓 ⋅ 𝑑𝜇 + 1 − 𝛼 ⋅ max
𝜇∈𝐶

∫ 𝑈 𝑓 ⋅ 𝑑𝜇 (Gilboa and Schmeidler, 1989)

• Called 𝛼-maxmin, or 𝛼-MEU model

• For 𝛼 = 1, this representation reduces to MEU, and for 𝛼 = 0 it reduces to what is termed maxmax expected 
utility max ∫𝐶𝑈 𝑓 𝑠 𝑑𝜇, and it allows for a whole range of intermediate attitudes toward ambiguity.

• Expected utility with uncertain probabilities (EUUP) (Izhakian, 2017)

• 𝑉 𝑋 = ∫𝑧≤0 1 − 𝛾−1 ∫𝒫 𝛾 𝑃 𝑈 𝑋 ≥ 𝑧 𝑑𝜉 𝑑𝑧 + ∫𝑧≥0 𝛾
−1 ∫𝒫 𝛾 𝑃 𝑈 𝑋 ≥ 𝑧 𝑑𝜉 𝑑𝑧

• 𝑋 is the investment payoff, 𝛾: 0,1 → ℝ is strictly increasing and twice-differentiable



• 𝓈 be a state space

• 𝑓 is an act on a state space 𝓈

• 𝜉 is a probability measure on an algebra of subset of 𝒫

• 𝐸 = {𝑡 ∈ 𝓈|𝑓 𝑡 ≥ 𝑓(𝑠)}

• Ambiguity – the uncertainty about probabilities – plays a role in the probability 
formation phase, while risk – the uncertainty about consequences – plays a role in the 
valuation phase. 

• Similarly to Arrow-Pratt’s risk theory, the coefficient of absolute ambiguity aversion 

(CAAA) can be defined by −
𝛾′′ 𝑃 𝐸

𝛾′ 𝑃 𝐸
, and the coefficient of relative ambiguity aversion 

(CRAA) by −
𝛾′′ 𝑃 𝐸

𝛾′ 𝑃 𝐸
𝑃(𝐸)




